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can be stable at all latitudes Q , while the sufficient conditions of stability fully coincide 
with the Beletskii condition (4) and do not contain any parameters of the orbit of the 
center of mass. 

The authors thank the participants of the siminar at the Chair of Celestial Mechanics 
and Gravimetry GAISh for assessing this paper. 
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The problem of selecting optimal parameters ensuring the maximum degree of 
stability, is considered for the linear oscillating systems [ 11. The upper bounds 
of the degree of stability are obtained. Necessary and sufficient conditions of 
attainability of the upper bound are formulated. Systems with one, two and three 
degrees of freedom are studied in detail. Similar problems have been already in- 
vestigated in [ 1 - 43 ~ 

1. Strtsmrrnt of the problem, We consider a system the motion of which 
is described by the following linear differential equation : 

Ax” + Bx’ -j- Cx = 0 U.1) 

Here x is an n-dimensional vector, A, B and C are n X n matrices and a dot denotes 
the derivative with respect to time. Equation (1.1) can describe e.g. small oscillations 
of a mechanical system about the position of equilibrium x = 0. Problems of the stabi- 
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lity of the system of the type (1.1) were studied in detail in [s]. Let us consider two 
problems concerning the choice of the parameters of the system. 

Problem 1. Let A and C be given positive definite matrices. We require to find 
a real matrix B such that the system (1.1) is stable and its degree of stability is the 

highest possible (the degree of stability of a stable system is given by the quantity 
min IRe hj”l Cl]). Here hj” (i = 1, 2, . . ., 2n) denote the roots of the characteristic 
l,cGW 

polynomial of the system (1.1). 
Problem 2. Let A and B be given positive definite matrices. We require to 

find a real matrix C such that the system (1.1) is stable and its degree of stability is 
the highest possible. 

In Problems 1 and 2 the matrix A, asstipulated, is positive definite and therefore, 
nonsingular, and the system (1.1) is equivalent to the system 

x” +A-‘Bx’ + A-TX = 0 (1.2) 

2, B18ic te#ult#, Expanding the characteristic determinant, we obtain the char- 
acteristic polynomial of the system (1.2) in the form 

A (h) = kzn + tr (A-l@ h”‘-l -+ cz2n_2 (bij, cij) h2T1-2 -t . . . (2.1) 

aI (bijv Q) h + RI, RI ==detC/det A 

The expression ah. (bij, qj) (k = 1, 2, . . ., 2rt - 2) means that the coefficients of 1Lk 

are functions of the elements of the matrices B and C, and the symbol tr denotes the 
trace of the matrix. 

Using the relations 
Rl = i_i hj”, tr (‘4-V?) =: - 5 Re hjO 

ii=1 ,i=l 

and the fact that the real parts of the roots of the characteristic polynomial of a stable 

system are nonpositive, we can prove the following assertions. 

Assertion 1. If A and C are’given positive definite matrices and the system 

(1.2) is stable, then ,nin , Re h,. , < R 

1<jc2n 
3 ’ 2n’ 

R,, = ‘n{det C / det A 

and the equality is attained if and only if all roots of the characteristic polynomial are 

equal to hi” = - Ran, i = 1, 2, . . ., 2n. 

Assertion 2. If A and B are given positive definite matrices and the system 

(1.2) is stable, then min 
l,<jgzn 

1 Re hjo [ Q tr (ii-lB) / 2n 

and the equality is attained if and only if 

Re J,j” = - tr (A-lB) / 2n, j = 1,2,. . . ,2n 

i.e. when all roots of the characteristic polynomial have the form 

K3+zS = - tr (A --lB) / 2n 5 i0, 0 = 1, 2, . . ., n 

From Assertion 1 it follows that a system with a degree of stability equal to Ran has 
a characteristic polynomial equal to A (1) = (A f Ran)2n9 and its coefficients are 

a 
k 

=ck R2n-k 
2n 2n 9 k _ 0. 1,. .., 2n (2.2) 
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where CL are the binomial coefficients. If the matrices A and C are specified, then 
the coerncients of the characteristic polynomial (2.1) are, with the exception of the free 
term and of the coefficient of hsn which is equal to unity, definite functions of the ele- 
ments of the matrix B. Equating the coefficients of the polynomial (2.1) dependent on 
the elements of B with the corresponding coefficients of (2.2). we obtain a system of 
2n - i equations (since only 2n - 1 coefficients of the characteristic polynomial de- 
pend on the elements of B) for 9 unknown elements of this matrix 

tr (A-‘@ = C;;-1R2n , (2.3) 

al (bij,-cij) = C~,tR~~-l, 1==1,2,...,2n-2 

The degree of stability of the system (1.2) attains its upper limit equal to Rs, in the 
class of real matrices B (with the positive definite matrices A and C given), if and 

only if the system of equations (2.3) has at least one real solution relative to bij (4 i = 

1, 2, . . ., n). Any real matrix the elements of which satisfy the system of equations 
(2.3). is the optimal matrix dor Problem 1. 

From Assertion 2 it follows that the characteristic polynomial of a system with the 
degree of stability tr (A-1B) / 2n is equal to 

A $1 = fi [(h + tr (A-1~) / 21~)~ j- L,,~I (2.4) 
.9=1 

The last expression enables us to express the coefficients of the polynomial as functions 
of 8, (s = 1, 2, . . .) n) . Let us denote the coefficients of hkexpressed as functions of 

8, (s= 1, 2, . . ., n), by ah. (61,) (k = 0, 1, 2, . . ., 2n - 2). With A and B given, the 
coefficients a,, (bij, cij) (k = 1, 2, . . ., 2n - 2) and the free term R, of the character- 
istic polynomial (2. l), are all definite functions of the elements of the matrix C. Equa- 
thing the coefficients of the characteristic polynomial dependent on the elements of C 
with the corresponding coeffcients ak (Q,), we obtain the following system of 2n - 1 

equations for n2 unknown elements of this matrix: 

aI (6ij, Cij) == aI (QJ, 1 m:_ 1, 2, . ., 2~ -- 2, R, = no (Qs) (2.5) 

The degree of stability of the system (1.2) attains its upper limit equal to tr (A-1B) / 2n 

in the class of real matrices C (with the positive definite matrices A and B given), 

if and only if the system (2.5) has at least one real solution relative to Q’ (i, i = 1, 2, 
. . ., n). Any real matrix the elements of which satisfy the system (2.5) is the optimal 

matrix of Problem 2. We note that the system (2.5) has n additional arbitrary real pa- 
rameters 9, (s = 1, 2, . . ., n). The arbitrariness can be utilized for ensuring that cer- 
tain conditions are met, e.g. for making the matrix C positive definite. 

3. Systems with m Q 3. Let us consider one-, two- and three-dimensional sys- 
tems. Solving Problem 1, we assume that A = E is a unit matrix and C is a diagonal 
matrix 

C = diag (al*, 0~2 , . . ., o,~), Oi’+O, i= 1,2,. ..,n 

In solving Problem 2 we assume that _4 = E is a unit matrix and B is a diagonal 
matrix with positive diagonal elements 

B = diag (b,,, b,,, . . ., b,,) 
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The above assumptions do not lead to any loss of generality, since the matrices A and 

C in Problem 1 and A and B in Problem 2, as stipulated, are positive definite ones. 
COnkXquently a single nonsingular transformation is sufficient to convert A into a unit 

matrix and C (in Problem 1) or B (in Problem 2) into a diagonal matrix with positive 
diagonal elements. 

1). n = 1. In this case the characteristic polynomial has the form A (h) -= hs + 
bh + d. 

Solution of Problem 1. In accordance with the results stated in Sect. 2, the 
optimal value of b is equal to 20 and the corresponding highest degree of stability is 

o. The optimal parameter can, in this case, be determined uniquely. 
Note 1. When 0~2 = 09 = . . . = an2 = aa and a. is arbitrary, the diagonal mat- 

rix B=diag(20, 2w, . . ., 20) is the optimal matrix for Problem 1, and the corresponding 
degree of stability is o. 

Solution of Problem 2. When n = 1, Eq, (2.4) has the form 

A (h) = hs + bh + P2 f b2/4 

The system (2.5) reduces to a single equation c = b2/4 + B2,. the optimal value of 
c = b2 f 4 -t Qa and the corresponding degree of stability is b I 2. The value of the opti- 

mal coefficient is determined in this case not exactly as in Problem 1, but to within an 

arbitrary positive term. 

Note 2. When b,, = bs = . . . = b,,,, = b and n is arbitrary, the diagonal mat- 

rix 
C := diag 

( 
$ + 5112, f + Q22, . . . , ++C2,2j 

is the optimal matrix for Problem 2, and the corresponding degree of stability is b / 2. 

2). n= 2. Solution of Problem 1. In this case the system (2.3) has the 

form 
b,, i- baa = 4 1/ 010s (3. I) 
01~ -t_ 022 + bllbal - b,,bsl = 60~0, (3.2) 

02~ b,, + a2b,, = 4 (qog)” (3.3) 

If 0~2 # oz2, then bll and b,, are determined uniquely from (3.1) and (3.3) and the 

product blzbal is found uniquely from (3.2) 

bll = 
401 I/wloz 402 JGYG 

Olf 02 ’ 
b22==yo~ 

blabat = (01 - G/(~I + ~a)’ 

(3.4) 

Thus for 012 # r& the optimal matrix is determined by Eqs. (3.1) - (3.3) to within the 
product of the off-diagonal matrix elements. Since the product blabs1 is positive, it is 
possible to select matrix B as the symmetric matrix which maximizes the degree of 
stability. If symmetry is stipulated, the optimal matrix is determined to within thesign 
of the off-diagonal matrix elements. If 01 2 = 022, then (3.1) and (3.3) are linearly 

dependent and the elements bll, b,, can be selected in an infinite number of ways. 

We note that bll and b,, determined by (3.4) represent a solution of the system (3. I), 
(3.3) also when 0~2 = W’, In this case b,,bzl = 0 and the matrix can be chosen dia- 

gonal 
Let us establish the conditions of positive definiteness of the optimal matrix. The 
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necessary and sufficient condition of positive definiteness is that b,, > 0 and det B > 0, 
The first inequality follows from (3,4), hence the optimal matrix is positive definite if 
and only if det B = 6~~0, - ~12 - 02% > 0 

This inequality in turn holds if and only if 

In this cafe the upper limit of the degree of stability can be secured by the dissipative 
forces. 

Solution of Problem 2. In the ho-dimensional case the system of equations 
(2.5) has the form cl’ + $2 -f- &bza = ‘h (b,, + bda + SV + SW (3.6) 

Maa + c&’ = ‘/a (SV + Pz2) (b,’ + &jr) + Ke (b’l + b,,) ’ (3.7) 

%1%2 - Cl2%1 = '/2sa (b,, + b&* + %a &I + b,)*(W + Qz2) + &*hzoe (3* *I 

If b,, # b,, then the system (3.6), (3.7). with Q’ and Qa given, has a unique solution 
relative to cl1 and css 

c1ac,, = % fbaB - bd4 + % (bee - b&s (aI* i Qa’d) + “fa (W - WY 

which is positive for any 8, and 8,. and it follows that the optimal matrix C can be 
chosen ~rnrne~i~ 

We note that the matrix C can always be chosen positive definite. In fact, for the 
positive definiteness it is necessary and sufficient that the matrix be symmetric and that 
the following inequalities hold : 

Cl1 > 0, Cll% - %e% > 0 

The above inequities follow directly from the expression for c,’ and from (3.8), res:s- 
pectively. 

If b,,= bza, then Eqs. (3.6) and (3.71 are linearly de~nd~t and the diagonal elements 
can be chosen in an infinite number of ways. 

Thus, in the two-dimensional case the upper limit of the degree of stability is equal 
to r/cz in the case of Problem 1, and to (bsl + b,,) / 4 in the case of Problem 2, 

3) A=== 3. In the three-dimensional case we shall limit ourselves to the proof of 
existence of a matrix which provides the upper limit of the dagree of stabiIity. 

Solution of Problem 1. In the ~~-dime~io~l case Eqs. (2.3) have the 
form $1 + b,, + bss = 6~XzGG~ (3.9) 

oiz +- oz2 + OS”- -t b&,, + bllbg3 +- h,,bsti - h&z - biabzz - bz3b31 = (3.10) 

15~'014024034 (3.11) 
(~2~~b~~) bI1 -t- (012 + W)bza + (01~ -I- ~2) B,, t 

II aa 33 - kd23b3, - brAd33 --t bx$,,b,, -4. b,,W3, - 43b,@zz = 

20~,#2W, 

(3.12) 

(3.13) 
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If oi2 = aa2 = os2, then the solution exists (see Note 1). Let us consider the case when 
tii2 # a22 (similarly we can consider the cases o12 # os2 and 022 $- 0~~1. Equations 

(3,9) and (3.13) representing a system of two linear equations for three unknown diago- 

nal elements of the matrix B have compatible solutions if oi2 # 022, since in this case 

the rank of the matrix of the coefficients accompanying the unknowns, is two. Equations 

(3,10) and (3.12) representing a system of two linear equations for three unknown pro- 

ducts b,,b,r, b,,bsl and bzsbs2 have compatible solutions for any diagonal elements of 

the matrix B and any value of the product blaba. Let us set b,, = 0. Then Eq, (3.11) 
has a solution relative to b,, since one can always make b,,b,, # 0. This proves that a 

solution exists, therefore the upper limit of the degree of stability which is equal to 

(qo202) lja, can be attained. 

In the case of Problem 2, the attainability of the upper limit can be proved in the 

same manner. 
The author thanks F. L. Chernous’ko for formulating the problem and valuable com- 

ments, and V .B.Lidskii for the assessment of the paper. 
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The motion of a heavy flexible filament being unwound from a rotor is investi- 
gated. The aerodynamic drag is taken into account. The possibility is shown of 
realizing a steady-state process and its investigation is given. 

Rapidly-rotating rotors are often fabricated by means of multilayer filament windings 
[ 11. When one of the peripheral turns is ruptured, the effect of aerodynamic drag can 
prevent complete unwinding of the filament. It is of interest to investigate the possibi- 
lity of a stationary rotational process for an incompletely unwound filament in the case 
of a constant angular rotor velocity and the effect of aerodynamic drag, and also to de- 
termine the shape and tension of the free part of the filament (not lying on the rotor), 
the limit radius of the unwinding and the force of interaction between this part of the 


